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THE EFFICIENT COMPUTATION OF FOURIER TRANSFORMS 
ON THE SYMMETRIC GROUP 

DAVID K. MASLEN 

ABSTRACT. This paper introduces new techniques for the efficient computation 
of Fourier transforms on symmetric groups and their homogeneous spaces. We 
replace the matrix multiplications in Clausen's algorithm with sums indexed by 
combinatorial objects that generalize Young tableaux, and write the result in 
a form similar to Horner's rule. The algorithm we obtain computes the Fourier 
transform of a function on Sn in no more than 3 n(n-1) IS,, multiplications 
and the same number of additions. Analysis of our algorithm leads to sevxeral 
combinatorial problems that generalize path counting. We prove corresponding 
results for inverse transforms and transforms on homogeneous spaces. 

1. INTRODUCTION 

The harmonic analysis of a complex function on a finite cyclic group is the 
expansion of that function in a basis of complex exponential functions. This is 
equivalent to the discrete Fourier transform of a finite data sequence, and may 
be computed efficiently using the fast Fourier transform algorithms of Cooley and 
Tukey [7] or their many variants (see e.g. [12]). 

In the current paper we study the harmonic analysis of a function on the sym- 
metric group. The analogues of the complex exponentials are the matrix entries of 
a complete set of irreducible complex matrix representations of Sn, called matrix 
coefficients, and the expansion of functions in this basis may be computed by a 
generalized Fourier transform on the symmetric group. We describe efficient algo- 
rithms for computing the harmonic analysis of a function on the symmetric group, 
or equivalently, its generalized Fourier transform. Thus our results may be consid- 
ered a generalization of the fast Fourier transform to the symmetric group. We also 
present a related algorithm for the harmonic analysis of functions on homogeneous 
spaces. 

Fourier transforms on finite groups have been studied by many authors. The 
books of Beth [1], Clausen and Baum [3], and the survey article [19] are general 
references for the computational aspects of these transforms. Rockmore [22] and 
Diaconis [9] contain discussions of the applications. For applications more specific 
to symmetric groups, see [8] and [11]. 

The computation of Fourier transforms on symmetric groups was first studied 
by Clausen [5] [6], and Diaconis and Rockmore [10], using approaches related to the 
one taken in the current paper; also see [4] for a detailed discussion of Clausen's 
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algorithm and its implementation. Linton, Michler, and Olsson [16] use a different 
method that involves the decomposition of Fourier transforms taken at monomial 
representations. 

The algorithms we develop in the current paper are refinements of Clausen's 
algorithm [5] for computing Fourier transforms on the symmetric group, and of 
algorithms developed to compute Fourier transforms on compact Lie groups [18]. 
To describe our main results, let f be a complex function on Sn and let p be an 
irreducible matrix representation of Sn given in Young's orthogonal form (see [15] 
for terminology). Then the Fourier transform of f at p is the matrix sum 

(1.1) f(p)= E f(s)p(s). 
SESn 

Computation of the transforms (1.1) at a complete set of irreducible representations 
in Young's orthogonal form gives us the harmonic analysis of f, because the scaled 
matrix entry dIm [1(p)] is the coefficient of the function (s ~-* [p(s)]ij) in the 

expansion of f in the basis of matrix coefficients. We prove the following theorem, 
which counts the maximum of the numbers of additions and multiplications required 
to compute a collection of Fourier transforms on Sn. 

Theorem 1.1. The Fourier transform of a complex function on the symmetric 
group Sn may be computed at a complete set of irreducible matrix representations 
in Young's orthogonal form in no more than 3n(n4-1) S multiplications and the 
same number of additions. 

Note that since ISnl = n!, the number of scalar operations counted in Theo- 
rem 1.1 is O((log ISn 1)2 Sn l). Although we have stated Theorem 1.1 for Young's 
orthogonal form, we actually prove a more general result that applies, e.g., to 
Young's seminormal form as well. Results on the complexity of the corresponding 
inverse Fourier transform follow immediately by considering the transpose of our 
algorithms. 

Any complex function on a homogeneous space may also be considered to be 
a function on a group which is constant on cosets. In this way we may apply 
Fourier analysis on the group to functions on any homogeneous space. We prove the 
following theorem concerning the expansion of functions on homogeneous spaces. 

Theorem 1.2. The Fourier transform of a complex function on the homogeneous 
space Sn/Sn-k may be computed at a complete set of (class-i) irreducible matrix 
representations in Young's orthogonal form in no more than 3k(2n-k- 1) ISn/Sn_k 4 
multiplications and the same number of additions. 

There are several novel features of our approach to the computation of Fourier 
transforms. One is the use of a kind of commutativity in the group algebra of 
the symmetric group that lets us replace an iterated group algebra product by a 
sequence of bilinear maps. This allows us to write an expression for the Fourier 
transform in a form similar to Horner's rule, and leads to an efficient algorithm. 

Another interesting feature is the appearance of certain combinatorial objects 
that generalize Young tableaux. It is well known that Young tableaux may be 
associated with sequences of partitions, each obtained by adding a box to the Young 
diagram of the previous one. This corresponds to an upward walk in a partially 
ordered set called Young's lattice (see [24] and [25] for a discussion of combinatorial 
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problems associated with these and other walks). In the current paper we encounter 
sequences of partitions that satisfy more general relations corresponding to the 
mapping of a multiply-connected graph into Young's lattice. In joint work with 
Dan Rockmore, such ideas have been generalized to apply to the computation of 
Fourier transforms on other finite groups [21]. 

The organization of the paper is as follows. Section 2 contains background from 
the theory of Fourier transforms on finite groups. Section 3 contains the proof of 
the main theorem modulo several lemmas that are proven in Section 4. In Section 5 
we prove several combinatorial lemmas, and give an exact operation count for our 
algorithm. In Section 6 we turn our attention to homogeneous spaces, and finally, 
we conclude in Section 7. 

Although we have tried to make the paper relatively self-contained, we do use a 
number of facts from representation theory that may be found in the books of Serre 
[23], James and Kerber [15], and Macdonald [17]. Background from the theory of 
computation of Fourier transforms may be found in the book of Clausen and Baum 
[3], and in the articles [20] and [19]. 

2. FOURIER TRANSFORMS ON FINITE GROUPS 

The Fourier transform of a function on the symmetric group and the usual dis- 
crete Fourier transform of a finite data sequence are both special cases of Fourier 
transforms on finite groups. We refer the reader to Serre's book [23] for the relevant 
background from representation theory. 

Definition 2.1 (Fourier transform). Let G be a finite group and f be a complex- 
valued function on G. 

1. Let p be a matrix representation of G. -Then the Fourier transform of f 
at p, denoted f(p), is the matrix sum, 

(2.1) * (p) = E (S)p(S). 
sEG 

2. Let R be a set of matrix representations of G. Then the Fourier transform 
of f on R is the direct sum, 

(2.2) aR (f )= 3d (p) E Matdim p(C) I 

pE1Z pE1Z 

of Fourier transforms of f at the representations in R. 

Fast Fourier transforms, or FFTs, are algorithms for computing Fourier transforms 
efficiently. 

Example 2.2. When G = Z/NZ is a cyclic group, the irreducible representations 
are exactly the complex exponentials (j(k) = e27ijk/N considered as 1 x 1 matrix- 
valued functions. The associated Fourier transform is the usual discrete Fourier 
transform, which may be computed by the fast Fourier transform algorithms of 
Cooley and Tukey [7] and others. 

When defining the arithmetic complexity of computing a Fourier transform, we 
must allow for the possibility that the number of operations depends on the specific 
matrix representations used, and not just on their equivalence classes under change 
of bases. The reduced complexity is a related quantity, which is usually easier to 
work with. 
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Definition 2.3 (Complexity). Let G be a finite group, and R be any set of matrix 
representations of G. 

1. The complexity of the Fourier transform on the set X, denoted TG(1R), 
is the minimum number of arithmetic operations needed to compute the 
Fourier transform of f on R via a straight-line program for an arbitrary 
complex-valued function.f defined on G. 

2. The reduced complexity tG(R) is defined by 

tG(JZ) = TG(R)/ IGI . 

When there is no possibility of confusion, we will drop the 'R' in the notation 
for complexities and reduced complexities. 

We will always define the number of arithmetic operations counted by Defi- 
nition 2.3 to be the maximum of the number of complex multiplications and the 
number of complex additions, though for many of our algorithms these two numbers 
are the same. When the representations in R are unitary, all the multiplications 
occurring in our Fourier transform algorithms are by numbers of magnitude no 
greater than 1, so our results may be interpreted in terms of the 2-linear complex- 
ity of aR; see [3] Chapter 3. The recent book of P. Buirgisser, M. Clausen, and A. 
Shokrollahi [2] is a general reference for algebraic complexity theory that includes 
applications to Fourier transforms on groups. 

A direct approach to computing a Fourier transform at a complete set of in- 
equivalent irreducible matrix representations, using (2.1), gives the upper and lower 
bounds, 

IGI-I < TG(R) < IG02. 

2.1. The group algebra. Let G be a finite group. Then the group algebra C[G] is 
defined to be the space of all formal complex linear combinations of group elements, 
with the product defined by 

(S f(s)s) (Sh(t)t) S 
f(s)h(t)s t 

sEG tEG s,tEG 

Elements of C [G] may be identified with functions on the group in the obvious way, 
and the algebra product corresponds to convolution of functions. 

The most important case of Fourier transform arises when the set R is a com- 
plete set of inequivalent irreducible matrix representations of G. In this case the 
Fourier transform is an algebra isomorphism from the group algebra C[G], defined 
by functions on G, to a direct sum of matrix algebras, 

(2.3) 3R: C[G] -- Matdimp(C) 
pER 

Definition 2.4. Assume R is a complete set of inequivalent irreducible matrix rep- 
resentations of G. Then the inverse image of the natural basis of EDR Matdim p(C) 
under the Fourier transform 3R, is called the dual matrix coefficient basis for C [G] 
associated to R. 

Lemma 2.5 (cf. [5]). The computation of the Fourier transform 3Rf at a complete 
set of irreducible representations Z' is the same as computation of the sum 

(2.4) E f(s)s 
sEG 

in the group algebra, relative to the dual matrix coefficient basis associated to Ri. 
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Proof. This holds by linear algebra, since by definition aR is the change of basis 
map from functions on G represented by their function values to functions expressed 
in the dual matrix coefficient basis. D 

For us, the group algebra is mainly a convenient notation for dealing with all irre- 
ducible representations of the group G at the same time. In particular, computation 
of a product a . b in the group algebra relative to the dual matrix coefficient basis 
is the same thing as computing the collection of matrix multiplications p(a)p(b) 
for all p in R. In Section 4 we shall identify the group algebra with its coordinate 
realization in the dual matrix coefficient basis. The problem we then face is to 
compute the sum (2.4) given the function values f (s) and expressions for the group 
elements s in coordinates. 

2.2. Adapted representations. In order to derive more efficient algorithms for 
computing Fourier transforms, we will need to place conditions on the set of ma- 
trix representations R used. We now define a property that allows us to relate 
the computation of a Fourier transform to a collection of Fourier transforms on a 
subgroup. 

Definition 2.6 (Adapted representations). Assume G is a finite group, and IZ is 
a set of matrix representations of G. 

1. Assume K is a subgroup of G. TheritR is K-adapted, if there is a set 
JZK of inequivalent irreducible matrix representations of K, such that for 
each p E R the restricted representation p J K is a matrix direct sum of 
representations in RKK. 

2. The set of representations R is adapted to the chain of subgroups, 

(2.5) G = Kn > Kn-1 > > Ko = 1, 

provided that R is Ki-adapted for each subgroup in the chain. 

Any restricted representation is always conjugate to a direct sum of irreducible 
representations by complete reducibility (cf. [23] Section 1.4). In Definition 2.6 
we require the restricted representation to be equal to a matrix direct sum of 
irreducibles. Note that if R is K-adapted, then the set JZK is uniquely determined. 

Systems of Gel'fand-Tsetlin bases are an equivalent concept to adapted sets of 
matrix representations. Let li be a set of finite dimensional representations of 
G. Then a collection of bases of the representation spaces of li (one basis for 
each representation) is called a system of Gel fand-Tsetlin bases for li relative 
to the chain (2.5) if the set of matrix representations R obtained by writing the 
representations of R in coordinates relative to -these bases is adapted to (2.5). 

Systems of Gel'fand-Tsetlin bases were first defined in [13] for the calculation 
of the matrix coefficients of compact groups. The application to the efficient com- 
putation of Fourier transforms on finite groups was first noticed by Clausen [5], 
[6]. 

Example 2.7. If G is abelian, K is any subgroup of G, and 1Z is any set of irre- 
ducible matrix representations of G, then R is K-adapted. 
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Example 2.8. Young's orthogonal form, and Young's seminormal form (see [15]) 
are both examples of complete sets of irreducible matrix representations for the 
symmetric group Sn, adapted to the chain of subgroups, 

(2.6) Sn > Sn-1 > ... > S1 = 1. 

Since the restriction of representations from Sn to Sn-, is multiplicity free, the basis 
vectors of a system of Gel'fand-Tsetlin bases for the irreducible representations of 
Sn relative to (2.6) are determined up to scalar multiples. The corresponding sets 
of adapted representations are determined up to conjugation by diagonal matrices. 

The dual matrix coefficient basis associated to a complete adapted set of inequiv- 
alent irreducible representations has particularly nice computational properties. 

Definition 2.9. The dual matrix coefficient basis corresponding to a complete set 
of inequivalent irreducible representations adapted to the chain (2.5) is called a 
Gel'fand-Tsetlin basis for the group algebra C[G] relative to the chain (2.5). 

We can now relate the computation of a Fourier transform at an adapted set of 
representations to a collection of Fourier transforms on a subgroup. This idea was 
first due to Beth, and was developed by Clausen [5], [6], and Diaconis and Rockmore 
[10]. Before giving a precise statement we must introduce some notation. Assume 
K is a subgroup of G, R is a K-adapted set of matrix representations of G, and Y 
is a subset of G. Then we let 
(2.7) 

i { The minimum number of operations required to compute 
mGQ(R, Y, K) x EyEy y . Liy in the Gel'fand-Tsetlin basis for C[G] associ- 

IGI t ated to X, where each Fy is an arbitrary element of C [K]. 

Lemma 2.10 ([10] Proposition 1, [5], [6]). Let K be a subgroup of G and let R be 
a complete K-adapted set of inequivalent irreducible matrix representations of G. 
Let Y c G be a set of coset representatives for G/K. Then 

tG (J) < tK (JZK) + mG (JZ Y, K). 

Proof. By Lemma 2.5, computation of a-Rf is equivalent to computation of the 
following sum E in a Gel'fand-Tsetlin basis for the group algebra. We have 

- f (s)s = Z f(y k)y * k 
(2.8) sEG yEY kEK 

- yFy 
yEY 

where for each y E Y, FY EkEK fy(k)k E C[K], and fy(k) = f(y . k). 
We may therefore use the following procedure to compute the sum E. First 

compute the algebra elements FY E C[K] for all y E Y, in the Gel'fand-Tsetlin basis 
of C[K] corresponding to JZK, by means of Fourier transforms on K. This requires 
IG/KI TK (ZK) scalar operations. The second step is to express the elements FY 
in coordinates relative to the Gel'fand-Tsetlin basis of C[G]. By Lemma 2.5, this 
is equivalent to finding the matrices fy (p J K) for all p E R given the matrices 

fy(r) for all T E JZK. This does not require any arithmetic operations, since, by 
the adaptedness of X, fy(p J K) is a block diagonal matrix that may be built from 
the matrices fy(T) by matrix direct sums. Finally we compute the sum E using 
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(2.8). By definition, this takes no more than IGI mG(R, Y, K) scalar operations, as 
the elements Fy all lie in C[K]. Thus we obtain 

TG(QR) < CG/K TK ('RK) + IC mG (R, Y, K). 
Dividing by IGI proves the lemma. E 

2.3. Harmonic analysis. We now describe how to relate the harmonic analysis 
of a function to its Fourier transforms. 

The dual matrix coefficient basis is not the same as the matrix coefficient basis 
referred to in the introduction. Instead, it is dual to the matrix coefficient basis 
under the bilinear form (f, h) = SEG f(s)h(s). 

Assume R is a complete set of inequivalent irreducible matrix representations 
of C. Let {Pij } be the matrix coefficient basis and {j ij } denote the dual basis, 
so (Pij, = 6ip jj; 5j,. Then by the Schur orthogonality relations, see [23] 

Section 2.2, pij(s) = mPIpjj(s-1). The coefficient of Pij in the harmonic analysis 
of a function f is 

(2.9) =dim o[fpV) dim p (2.9) (f,Pii) ~IGI [|P)ij IGI [f)P]i 

where fV(s) = f(s-1), pV(S) = p(S-1)T, and ( )T denotes transpose. Thus the 
harmonic analysis of f may be obtained by permuting the function values to get 
f V, applying a Fourier transform on X, reordering, and then rescaling the output 
by the factors dim p 

IGI 
The representation pv appearing in (2.9) is called the dual representation to p, 

and the set Rv = {pV p E R} is a complete set of irreducible representations 
that shares any adaptedness properties that R may have. By (2.9), the harmonic 
analysis of f may also be obtained by computinig the Fourier transform of f on 
RV, and then scaling the output by dim . Clearly, any algorithms we develop for 
computing Fourier on finite groups may be applied to the computation of these 
transforms in at least two different ways. 

When the representation matrices are all real and orthogonal, e.g., for Young's 
orthogonal form, then pv = p for each p in X, and the harmonic analysis of f may 
be obtained directly from its Fourier transform on R. 

3. FAST TRANSFORMS ON THE SYMMETRIC GROUP 

In this section we shall restate and prove Theorem 1.1 assuming the existence 
of certain bilinear maps with specific properties. We leave the construction of the 
bilinear maps to Section 4. In this way we hope to clarify the steps in the proof 
by giving the overall form of the proof first, and then filling in the technical details 
later. 

Rewriting Theorem 1.1 in the language of adapted representations, gives us 
Theorem 3.1. For background on the representation theory of symmetric groups, 
we refer the reader to [15]. 

Theorem 3.1. The Fourier transform of a complex function on the symmetric 
group Sn may be computed at a complete set of irreducible matrix representations 
of Sn adapted to the chain of subgroups 

(3.1) Sn > Sn-1 > ... > S= 

in no more than 3n(n -1) ISnI multiplications and the same number of additions. 4 
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Proof. We start by noting that if ti is defined to be the transposition (i -1 i), then 
the group elements 

t2 ... tn I t3 ... tni .. * tnl el 

form a complete set of coset representatives for Sn relative to Sn1. Thus by 
Lemma 2.10, the problem of computing the Fourier transforms of a complex function 
at a set of adapted representations will be solved, if we can show how to compute 
sums of the form 

n 

(3.2) E = Eti+1 ..tn Fi 
i=1 

in a Gel'fand-Tsetlin basis for the group algebra relative to the chain (3.1), where 
the Fi are arbitrary elements of C[Sn-1]. 

We shall rearrange the sum (3.2) in a form similar to Horner's rule, and show 
that such a sum may be computed in no more than 3(n2-1) ISnl scalar operations, 
given the algebra elements Fi E C[Sni1] in the appropriate Gel'fand-Tsetlin basis. 
By Lemma 2.10, this relates the Fourier transform of a function on Sn to a collection 
of Fourier transforms on Sn_1, and allows us to prove the theorem inductively. 

The key to rearranging the sum (3.2) is to permute the order in which the 
group algebra multiplications are -performed. We claim that there is a sequence of 
bilinear maps *, . . . , *, and spaces V1, . . ., Vn, C2,.. ., Cn, such that the following 

2 n 
four properties hold. 

Prop. 1. Vi = C[Sn-1] and Vn = C[Sn]. For 2 < i < n, 

Ci = C[Sj] n Centralizer(C[Si-2]), 

and the map * Vi-1 x Ci - vi is bilinear. 

Prop. 2. If F E V1 and si E Ci for 2 < i < n, then 

S2 $S3* Sn* F (F * S2) $S3 *Sn 

Prop. 3. For each i with 2 < i < n, the map 

Fi ... (F*2e) *3e- .)*e(EVi 2 3 

requires no arithmetic computation to apply. 
Prop. 4. Given vi-1 E Vi-1, si E Ci and vi E Vi, we may compute vi1*si +[vi in no 

more than 3(in1) Snl multiplications and the same number of additions. 

In order to simplify the presentation, we shall defer the construction of * and the 

demonstration of Prop. 1-4 to Section 4, where they will follow from Lemmas 4.5- 
4.8 respectively. We have already chosen bases for the spaces VI, Vn, and Ci 
(Gel'fand-Tsetlin bases); the spaces Vi, 1 < i < n, will be constructed with a 
natural choice of basis, and it is with respect to these bases that the complexity 
statements Prop. 3 and Prop. 4 are to be interpreted. 
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Using Prop. 1 and Prop. 2, it is easy to rearrange (3.2) into a more manageable 
form, 

n 
E e= e- * ti+1 . tn Fi 

i=l1 

n 

...( (Fi *e) *-)e) 
* ti+1 ...*tn 

i=1 

[[... [[Fl*t2+F2*e] *t3+(F3*e)*e] t4 

... ~~+ ....]*tn-1 
n-1 

+ ( (Fni-2) 1 * * *) * e] *tn 

+ ... (Fn 2 e-) ...* ) * e- 

The algorithm for computing E given F1,... Fn proceeds in the obvious way: 

Stage 1. Let G, = F1. 
Stage i. Let Gi = Gi-, * ti + (.. (Fi * e)*...)* e, for 2 < i < n. 

Stage n. Let E = Gn = Gn1 *tn + Fn. n 
A quick look at (3.3) verifies that E = Gn. 

Assume that the Fi are given and the ti have been precomputed relative to the 
Gel'fand-Tsetlin basis. Then Stage 1 requires no computation, and by Prop. 3 and 
Prop. 4 the computation of Gi from Gi-1 and Fi at Stage i requires no more than 
3(i-1) ISnl scalar operations. 

Adding the operation counts for all the stages shows that the computation of 
E given Fl, .Fn takes no more than 2 1 SnI scalar operations. Thus by 
Lemma 2.10, the reduced complexities for the computation of Fourier transforms 
relative to Gel'fand-Tsetlin bases satisfy 

(3.4) t < t + 3(n - 1) 

Applying (3.4) recursively shows that ts7, < 3n(n-1). Therefore the Fourier trans- 
form of a complex function on Sn may be computed in no more than 3n(n-1) |Sn| 

scalar operations. Prop. 4 easily implies that the number of multiplications required 
by our algorithm is the same as the number of additions. D 

Remark 3.2. Clausen's algorithm [5] calculates the products t+1 ... tn .Fi occurring 
in (3.2) by matrix multiplication of the corresponding matrices in the order from 
right to left. By Lemma 4.1 equation (4.5), the matrices corresponding to to tj are 
sparse so the product tj . (tj+l ... tn Fi), i < j may be computed efficiently given 
tj and tj+1 ... tn Fi in a Gel'fand-Tsetlin basis. 

Clausen's algorithm requires (n+1)n(n-i) ISnl scalar operations, so Theorem 3.1 3 
represents an improvement of order a factor n. 
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Theorem 3.1 immediately gives us a method for computing inverse Fourier trans- 
forms as well. To see this, suppose that R is a complete set of inequivalent irre- 
ducible representations of the group G, and let X, 3 be the maps 

(3.5) 

2: GMat(dimp)(C) GMat(dimp(C): GF(p) 
i m 

d pF(i 
pE1R pE1R pE1R p 1Z 

(3.6) 

3: E Mat (dimp) (C) 'ED Mat(dim<Ao)(C) E F(p) i El F3 ((pV) 
pe 7Z <7, 7V p 7Z , 7cV 

where pv denotes the dual representation; see Section 2.3. Then a Tv3oDS = I, 
where ()T denotes transpose, and I is the identity transformation. 

Theorem 3.3. Assume R is a complete set of irreducible matrix representations of 
Sn adapted to the chain of subgroups (3.1). For each p E JZ, let F(p) be a complex 
dim p x dim p matrix. Then the inverse Fourier transform 

(3.7) f (s) F(p)] (s) = I S(dim p) ace (F (p) p (s)) 

may be computed in no more than 3n(n-1) ISnl scalar operations. 

Proof. Equation (3.7) is simply the Fourier inversion formula; see [23] 6.2 Proposi- 
tion 11. To compute the inverse transform W91 first apply X, as defined by (3.5) 
with G = Sn, then apply 3, and finally apply WRv using the transpose algorithm 
(see [3], Chapter 3) of the algorithm of Theorem 3.1 for computing the Fourier 
transform at the set of dual representations RI'. The last step is possible because 
RZ' is also adapted to the chain (3.1). 

The map 3 is a re-indexing map, and requires no arithmetic operations to apply. 
The Fourier transform algorithm of Theorem 3.1 has the same number of outputs 
as inputs, so by [3] Theorem 3.10, the transpose algorithm takes exactly the same 
number of scalar operations as the Fourier transform algorithm of Theorem 3.1. 
Application of 0 requires at most an extra ISnI scalar operations, but the bound of 
Theorem 3.1 overestimates the complexity of the Fourier transform by at least this 
much (see the proofs of Lemma 4.8 and Lemma 5.3 in the following sections). D 

Remark 3.4. If the representations in 1Z are unitary, then W91 = Wj, where ()* 
denotes conjugate transpose. If the representations are orthogonal, e.g., Young's 
orthogonal form, then the conjugate transpose may be replaced by a transpose. For 
representations of the symmetric group, we may always find a diagonal transfor- 
mation OR such that 3,TRA3 = I (see Example 2.8). 

The transformation 3 can be given a coordinate-free definition, but that requires 
a more sophisticated interpretation of the transposes. 

4. CONSTRUCTION AND PROPERTIES OF THE BILINEAR MAPS 

From now on, it is convenient for us to fix a complete set of irreducible matrix 
representations of Sn adapted to the chain of subgroups 

(4.1) Sn > Sn-I > ... > SI = 1. 
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The standard bases for the spaces of column vectors on which these representations 
act is then a system of Gel'fand-Tsetlin bases relative to (4.1). This also deter- 
mines a Gel'fand-Tsetlin basis for the group algebra C[Sn]. Unless explicitly stated 
otherwise, we shall always refer to this system of Gel'fand-Tsetlin bases, and this 
Gel'fand-Tsetlin basis for the group algebra. 

To motivate our construction of the bilinear maps * and the spaces Vi, we first 

investigate some explicit ways of writing a product of elements in the group algebra 
in coordinates. We start by noting that the irreducible representations of Sn are in 
one to one correspondence with partitions of n; see e.g., [17]. If an is a partition of 
n, then we denote the corresponding representation of Sn by A/?n. 

It is well known [15] that a system of Gel'fand-Tsetlin bases for representations of 
Sn relative to the chain of subgroups (4.1) may be indexed by a chain of partitions 

(4.2) a = an < an-I .2 a ( (ao = 0) 

where ai is a partition of i, and a < d indicates that the partition / may 
be obtained from a by removing a single box, or equivalently that AO occurs in 
the restriction of /\ to the symmetric group of one lower order. a indexes the 
unique Gel'fand-Tsetlin basis vector for A?Xn which is contained in the isotypic 
subspace of type A/i under the action of Si, for 1 < i < n. Thus, a single chain of 
partitions determines an irreducible representation of Sn and a basis vector for that 
representation, whereas a pair of chains of partitions a, ,3 with an = o3n determines 
an element of the Gel'fand-Tsetlin basis for the group algebra C[Sn]1 

The chain of partitions a is equivalent to specifying a standard Young's tableau 
on a Young's diagram with n boxes (see [17]), so all our arguments involving chains 
of partitions could be rewritten in terms of Young's tableaux. 

Convention 1. We shall identify the group algebra C[Sn] with its realization in 
coordinates relative to the Gel'fand-Tsetlin basis, indexed by pairs of chains of 
partitions. Thus, if G is an element of C[Sn] we shall denote its coordinates relative 
to the Gel'fand-Tsetlin basis by either [G],3 ,x or 

(4.3) G On On-I B1 

where /3 is the chain of partitions indexing rows of Fourier transforms of G, and a 
indexes columns. Note that we always have an = O3n, which explains why an does 
not occur in (4.3). 

Convention 2. An element F of C[Sn-1] can be written in coordinates relative to 
the restricted Gel'fand-Tsetlin basis for C[Sn1]. When we do this, we shall denote 
the coordinates by 

F (:n- 1 n-2 . .. jB1 
C (n-2 .. C ?I 

Alternatively, F may be considered as an element of C[Sn], and expanded in the 
Gel'fand-Tsetlin basis for that algebra. Fortunately, these two notations are easily 
reconciled by Lemma 4.1, which follows. In particular, moving from one realization 
to another is simply a re-indexing process and does not require any arithmetic 
computation. 
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Recall that we defined the spaces Ci, 2 < i < n, to be the centralizer algebras 

ci = c[sil n Centralizer(C[Si-21)- 

Elements of the spaces Ci and C[Sn-1] have a very special form when written in 
the Gel'fand-Tsetlin basis for C[Sn]. 

Lemma 4.1. Assume that 2 < i.< n, that si E Ci and F E C[Sn1]. Then, 
relative to a Gel'fand-Tsetlin basis for the group algebra C[Sn], the elements si and 
F have the forms 

(4.4) [ 6n= 1n-i 3n P i 6 i-26 

(4.5) [F]3, = 6Ctn-l3n-1 F (i3n-I n-2 . 1 

where P is a complex function of the variables indicated. 

Proof. These are standard facts about Gel'fand-Tsetlin bases; see e.g., [14] Propo- 
sition 2.3.12 for a proof in different notation. Equation (4.5) follows immediately 
from the definition of adaptedness to Sn and Sn-1, since it describes the correct 
block diagonal matrices. Iterating (4.5) shows that an element H of C[Si], i < n-i, 
has the form 

[H]~ = b l6c n1,/3n-i ... H (rc /ii-1 .H1) Cai1 ... a1 / 

in the Gel'fand-Tsetlin basis. The general form of an element of C[Sn] which 
commutes with C[Si] is easily found by solving the equations [AH - HA13 ,x = 0 
as H runs over the basis for C [S]. O 

Remark 4.2. Lemma 4.1 shows us that Ci is isomorphic to the space of complex 
functions of the partition-valued variables !i, 3i-1, ai-1, ai-2, where these variables 
are constrained to satisfy the relation 

(4.6) 

?ti-1 a ?i-2 

This isomorphism may be given as si F-X Pr., which requires no computation relative 
to a Gel'fand-Tsetlin basis for the subgroup chain (4.1). 

Example 4.3. A particularly relevant case of Lemma 4.1 equation (4.4) is when 
the complete adapted set of irreducible matrix representations is Young's orthogonal 
form, and s =ti = (i-l i). In that case there is an explicit formula for Pt' I first 
determined by A. Young. 

For any two boxes b1 and b2 in a Young diagram, we define the axial distance 
from b1 to b2 to be d(b1, b2), where 

d(b1, b2) = row(bi) - row(b2) + column(b1) - column(b2). 

Thus, d(b1, b2) is positive if b1 lies to the right and upwards from b2, and negative 
if b1 lies to the left and downwards from b2. 

Now suppose that A/h-Iai-l,ai-2 are partitions which satisfy (4.6). Then 
the skew diagrams of pi - pi-1 and pi - Cai-2 each consist of a single box, and 
the axial distance d(/i - pi-1, i-1 - ai-2) is simply the signed length of the hook 
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in pi starting at one box and ending one box before the other. The formula for Pt, 
may now be stated as 

(47) pi (/pi pi-) _ d(/i-3i-1U3 i-- C1i-2) if aoii = 3i-1, 

ti t(Xi-l (Xi-2 J1 - +/l-C(:i-i-l pi-l-i-2) -2 if a,_1 # /3i-1. 

For a proof of this formula, in slightly different notation, see [15], Chapter 3. The 
constraints (4.6) imply that Pt, given by (4.7) is symmetric in ai-1 and pi-i. 

Now we may give an expression for the product S2 ... s, F in the Gel'fand-Tsetlin 
basis. 

Lemma 4.4. Assume F E C[Sn_1] and si E Ci for 2 < i < n. Then, relative to 
the Gel'fand-Tsetlin basis for the group algebra C[Sn], the element S2 ... Sn * F may 
be expressed as 

Z (Yn-1 Cn-2 aiN / iO- 
(4.8) [S2 .Sn .F])3,1 s F( =n-2 71 

I 
Psi C?iI ai-2) 

where the partitions aj, /j, 'yj satisfy the relations (4.9), and an- I = 'Yn- I - 

(4.9) O3n r 13n-I n-2 0 * **( /33 0 /32 + |31 

'_Yn- - I Cfn-2 C (n-3 a - <(2 cv IX C (O 

a_n -2 7 *<t1 

Proof. This follows by multiplying the algebra elements S2, . . ., s?) F in coordinates, 
using the expressions (4.4) and (4.5). 0 

4.1. Definition of the spaces and maps. For 1 < i < n we define Vi to be the 
space of complex functions of the form 

O i ... O1 
(4.10) G QCin-2 XC+i-) 

\tYn- I *-- - Y ""/ 

where aXi- .1,..., )aXn-2) 31) ... i3i, and a ),n, n- ) are partitions satisfying the 
restriction relations (4.11). 

(4.11)pi p- 

'_Yn - I Cfn-2 C - <(i-1 ? 

'_Yn -2 7 *< t1 

When i = 1 or i = n, a collection of partitions satisfying (4.11) is equivalent to 
specifying a pair of standard Young's tableaux of the same shape, and the spaces 
we get are C[Sn-1] and C[Sn] respectively, using Convention 1. (In the case of VI 
note that the variable /1 can only assume one possible value.) This justifies the 
definitions VI = C[Sn_1] and Vn = C[Sn]. 
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Notice that the spaces Vi, 2 < i < n- 1, come equipped with a natural choice of 
basis given by indicator functions which are each 1 at exactly one point (choice of 
sequences of partitions) and zero elsewhere. When i = 1 or i = n, these are exactly 
the Gel'fand-Tsetlin bases. 

The bilinear maps * are now easy to define. Assume that 2 < i < n, that 

Gi-I E Vi-1, and that si E Ci. Then we define Gi1 * si E Vi by 

(4.12) 

[G ] si C'i' Ci-I G ( : aCnJ ).. (Ci 2 ps) 

where ai-2 satisfies (4.13). 

(4.13) /ii < pi-1 

Cji -i -2 a 

Notice that in going from Gi-1 to Gij1 * si we remove a dependence on ai-2 and 

add a dependence on fi. 

4.2. Properties of the bilinear maps. We now prove a sequence of lemmas 
corresponding to the properties Prop. 1-4, required by the proof of Theorem 3.1. 

Lemma 4.5 (Prop. 1). The map *: Vi-> x Ci -* Vi is bilinear. 

Proof. This follows from the bilinearity of (4.12), and the linearity of the coordi- 
natizing map Pt. O 

Lemma 4.6 (Prop. 2). Assume F E V1, and si E Ci for 2 < i < n. Then 

(4.14) S2 * S3 .. F= (-.F (F * S2) * S3 ...) * Sn 

Proof. Rearranging (4.8) in Lemma 4.4 shows that 

(4.15) [S2 ... Sn * F]3, 

[ [Z[Z[F ( Fn-1I Cfn2 ... Cl p2 (/32 1)1 p3 (33 2 

Cen-2 L Q CL 
""/I 

82 
0Cej L3 t 1 a1( 2 aely 

p4 (34 /33)].] pn KQ3n /3n-I) 

14X~3 aXy]2 n CXn-I CVn-2J 

The right hand side of (4.15) is exactly the composition of bilinear maps 

( (F * S2) * . ) * Sn- 

The summation over ai-2 corresponds to the application of *. We have not writ- 

ten the summation over ao explicitly, because the only partition on 0 boxes is Q. 
Similarly, one could omit the sum on a1, as that is trivial too. E 



EFFICIENT COMPUTATION OF FOURIER TRANSFORMS 1135 

Lemma 4.7 (Prop. 3). Assume 2 < i < n and F E C[Sn1]. Then we have the 
following expression for (... (F * e) *...) * e in coordinates. 

2 3 i 

(4.16) [( (F 2 e) )*e] (CVn-2 ..C.i- 
1 

tYn-1 ~ '_n- C*- .. C*- Oi 2 ..1 

This require n ari c 1F ( Yn-2 ... ... "/I) 

This requires no arithmetic computation; it is simply a re-indexing operation. 

Proof. Equation (4.16) follows by using the definition (4.12) repeatedly, and noting 
that Pe has a particularly simple form, 

Pe,(g ?i2 = F-1-ii- 

Before proving Prop. 4 we introduce notation which lets us give an exact count 
of the number of operations we use to apply the bilinear maps *. We prove the 

exact count in this section, but defer the proof of the bound 3(i-1) Sn?I to the next 
section. 

Equation (4.12), which defines the bilinear maps, has a combinatorial indexing 
scheme that generalizes Young's tableaux. The left hand side of that formula in- 
volves sequences of partitions al.).. <Ynn-i, 131- ,, Oi,Oi-2. an-2 (with aj a 
partition of j etc.), which satisfy the relations 

(4.17) fi -X i-i < - i 

""Yn - I Cfn-2 C - #(i-1 C (i-2 ? 

N~~~~ + / 
- -Yn-2 a *-- a 2 

Let ?FCn denote the number of such sequences. 
The number of arithmetic operations taken by our algorithm may be expressed in 

terms of .F,n, and the combinatorial lemmas proven in Section 5 allow us to further 
express this count in terms of ?i, which we bound. Lemma 4.8, summarizes the 
end result. 

Lemma 4.8 (Prop. 4). Assume that 2 < i < n, and that vij1 E Vi-1, Si E Ci 
and vi E Vi, are given. Then we may compute vij1 * si + vi in no more than 

-< 3(in1) S multiplications and the same number of additions. 

Proof. Let gi denote the number of sequences of partitions ..l.... ., yn- 1 v13 v... * *3i 

i-l ) .a.n-2 which satisfy the relations (4.11). Clearly gi = dim Vi. 
Calculating vi1 * si using (4.12) directly takes L7Cn scalar multiplications and 

-gin scalar additions. Adding vi to the result requires an additional gi addi- 
tions. Therefore the computation of vij * s5 + vi takes a total of 7n multiplications 

and J,7n additions. The bound .FTn < 3(iS1) ISTh is proven in Lemma 5.3. 0 
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We have now verified all four properties of *. This completes the proof of The- 

orem 3.1, except for the combinatorial Lemma 5.3. 

5. COMBINATORIAL LEMMAS 

We now turn to the combinatorial lemmas needed to complete the proof of 
Theorem 3.1. First we introduce some notation which is useful for counting chains 
of partitions. 

Assume that i > j, that a is a partition of i, and that 4 is a partition of j. Then 
let M (a, 4) denote the number of sequences of partitions cej.. . , aei such that 

(at = a-i) C ^i-l I .. v^j+l (ai : 

The function M has a number of other equivalent definitions. 

M(a, 4) = multiplicity of AO in the restriction of a to Sj 
= number of standard tableaux on the skew diagram a -4 

= number of ways of removing boxes from a to get 4. 

These numbers are a special case of the Kostka numbers [17] and are usually denoted 
K,,, although [15] writes ko,/ (1lIaI-IoI). We have chosen our notation 
to emphasize the properties of this function which come from its interpretation 
as restriction multiplicities (cf., [20]). In this paper we will only use the formal 
properties of M and a few spec'ial values. In particular, it is easily shown ([14] 
Corollary 2.3.2) that if a, 4 are partitions of i and j respectively, and j < k < i, 
then 

(5.1) M(a, ( ) = Z M(a, ak )M (a k,), 
Ct k 

where ak ranges over all partitions of k. 
We shall also use the notation dca = M (a, d)). Thus dca is the dimension of the 

representation A/, and may be calculated using the famous hook-length formula of 
Frame, Robinson, and Thrall (see [17] or [15]). 

Recall that Jn denotes the number of sequences of partitions alI, , )n-l) 

41. ... ,4i3 a^i-2. ... an-2 (with aj a partition of j etc.), which satisfy the rela- 
tions (4.17). 

Lemma 5.1. 

(5.2) -'Fin = E 4 M(yN- 1) Ci - 1) M(Ci - 1 Ci -2) 4(0i, Cfi - ) 
(i 5.i) - 

/Yn ,--i-1 ,i-2 

* ) W(i) Oi-l 0)M(i - v, CVi -2)dOBi_1dyn-_1) 

where aj, 43i, -y range over partitions of j. 

Proof. We count the sequences satisfying (4.17) as follows. First choose the parti- 
tions ai-2, ai-1 vi-l vW n-l subject only to the restrictions that ai-2 is a par- 
tition of i - 2, etc. Then the number of ways of choosing the chain of partitions 
from a?i-1 to -Yn-I is MA4(7n_ v1 ai-l ). Similarly, the number of ways of choosing the 
chain of partitions , 'Yi,... from X to -yn- is d-1n,1 and the number of ways of 
choosing the chain of partitions from X to 4i-I is d,8,-,. Furthermore, these choices 
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are independent given the choices of ' - , a?i- I and p3i-1. Finally we note that the 
choice of ai_2, ai_-, 3i-1, /i is only consistent with (4.17) when the product 

(Ci -ICi o-2)A4(f3i, ei-1).MA(13i, f-1) A4(fi3-I, ai-2) 

is nonzero. This product is always either 0 or 1, so the number of sequences 
satisfying (4.17) may be found by summing the product 

M (^yn- I ai-1) doYn-1d0ln_lM"(?i-1i ai-2)M4(Oii Cei-I)MAi, Ce)(iil,i-2) 

over all choices of ai-2, ai-jl, 3i-1, Oi,l n-l? 

Suppose a3 is a partition. Then let jmp(i3) denote the number of jumps in the 
Young diagram of /. For example, if / = (4, 3, 3, 1, 1), then jmp(13) = 3. 

Lemma 5.2. 1. .;T - )!j.i 2 
i-)! 
+~i_jMo_12i 2. = (i-1) ._(i-1)! ? - jmp(3i-)2dp. 1, where 3i-1 ranges over 

partitions of i - 1. 

Proof. 1. follows immediately from (5.2) by Frobenius reciprocity, since for any 
ai-I we have 

MQyn_l: oei,a )dtyn l = dim IndSn-l A - Sn-Il/Si-I * d.,-, j" (-yn-1) ai-l)d-~~~~~~~~~~n-i ~Si-I i- 
tYn-1 

For 2. we start with the sum (5.2) in the case n = i, and split it into two parts, 
distinguishing the cases where ai-, zh fi-, and ai-, = pi-l. If a?i- and /i-1 are 
distinct partitions of i - 1 which are both obtainied from f3i by removing a box, 
then they jointly determine pi (and ai-2), since the boxes removed from fi to get 
to these two partitions are distinct. Thus the contribution to FiF from terms with 
a i-I z/ i-I may be written as 

(5-3) E MA((i3 , )ai,2 "(ai-)d, dai-2) dce - A/d 
Cei-2 

?ei-l+:hi-i 

= E M(/Fi-I,ai-2)M4(ai-ila i-2)dai-ldpi3, M(Ai-1,Coi-2)dsl 
ati-2 pi-1,Cei-2 

ij- 1 ,ii-1 

Using Frobenius reciprocity and (5.1), the first term of (5.3) may be evaluated 
as 

E 4 M(aei , ai -2) dai_ E M(i - , Cei -2) do,i 
Cei-l ,ai-2 pi-l 

= E <~(aki-,,aoi-2) da,il dim Ind s-2 1\t- ?ti-1,?tii i 

= E .M(ai-1,ai-2)dai_ IS-il/Si-21 da 2 
?iYj1 ,?ti-2 

-(i-1) E dcei_l=(i-)S_l. 
?ti-i 

The second term of (5.3), including the minus sign, is - ,_ jmp(fli)d . 
On the other hand, if aoi- = 3i-l, then the only conditions on 3i and ai-2 are 

that they may be obtained from /3i-l by adding or removing a box, respectively. In 
this case, given pi-1, there are jmp(/i-1) + 1 ways of choosing fi, and jmp(3i-1) 
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ways of choosing ai-2. Thus the contribution to ?i from terms with ai-1 = hi-i 
is 

Ejmp(oii1)(jmp(fi-1) + I)d 2 . ? 

Lemma 5.3. 

Fn<3(i -1) 
ni < ISnl. 

Proof. In light of Lemma 5.2, it suffices to show that for any partition pi of i, we 
have jmp(f3)2 < 2i. Let a = jmp(fi). By deleting rows and columns from the 
Young diagram of pi, we may obtain a new partition with fewer boxes, but the 
same number of jumps, and the Young diagram of this new partition can be made 
to have a staircase form, i.e., the new partition is exactly (a, a - 1, ... , 1). For an 
example, see Figure 1. The number of boxes in the staircase (a, a - 1, ... , 1) is 
Ia(a + 1), which shows that a(a + 1) < 2i. O 

FIGURE 1. Removing rows and columns to obtain a staircase. 

Remark 5.4. The same techniques used to prove Lemma 5.2 part 1 also show that 

dimVi = Snl 

The analogous problem of finding an explicit formula for 7n in closed form, if one 
exists, appears to be much more difficult. 

5.1. Exact operation counts. Lemma 4.8 allows us to give an exact expression 
for the complexity of our Fourier transform algorithm on Sn, which we may evaluate 
using the combinatorial lemmas. 

Theorem 5.5. The Fourier transform of a complex function on the symmetric 
group Sn may be computed at a complete set of irreducible matrix representations 
of S, adapted to the chain of subgroups 

Sn > Sn-I > ... >=S1 

in no more than 

(k=2 i=2 (i) 

multiplications and the same number of additions. 

Proof. By Lemma 4.5 and the proof of Theorem 3.1, we know that the number of 
multiplications (or additions) required by our algorithm is 

n nl k n k n!(k-1)!___ 

k=2 ki=2 2 E ( ! 
We have used Lemma 5.2 to simplify the result. D 
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Lemma 5.2 allows us to calculate ?t, and hence the exact complexity of our 
algorithm for computing Fourier transforms on Si, for small values of i. We have 
done this for 1 < i < 50, which certainly includes all cases where the algorithm 
might ever be implemented. In Table 1 we display these values for 1 < i < 12, where 
Ts, denotes the number of additions (or the number of multiplications) taken by 
the algorithm for computing Fourier transforms on Si. 

TABLE 1. Exact sequence and operation counts. 

i Zp.jrpCv3i)2d0i T.F Tsi sil TSi 
1 1 0 0 0.0 
2 2 2 2 1.0 
3 18 6 16 2.7 
4 78 36 130 5.4 
5 474 174 1088 9.1 
6 4004 1074 9792 13.6 
7 32404 8324 96452 19.1 
8 290558 67684 1034656 25.7 
9 2924922 613118 12029342 33.1 

10 33884848 6190842 150941204 41.6 
11 416578024 70172848 2037003932 51.0 
12 5485499312 855662824 29442867576 61.5 

It is interesting to note that for i < 50, the reduced complexity Ts, /Sil is 
bounded above by 1i(i - 1), and their ratio lies close to 1 for i in this range. 

5.2. Remarks concerning the combinatoriaf lemmas. Lemmas 5.1-5.3 have 
some simple generalizations, which become important when we extend the algo- 
rithm for Fourier transforms on the symmetric group to other finite groups and 
semisimple algebras. The main observation is that Young's lattice may be replaced 
by other Bratteli diagrams. 

Let N denote the nonnegative integers. A Bratteli diagram (see [14] and [26]) 
is a connected N-graded multigraph such that 

(i) Each level (vertices with the same grading) has only finitely many vertices, 
and finitely many edges connected to it. 

(ii) Edges only connect adjacent levels, and if two adjacent levels are non- 
empty, then the bipartite graph, consisting of those two levels and the 
edges connecting them, is connected. 

(iii) The zeroth level contains a unique vertex, denoted q. 

Given any Bratteli diagram and two vertices ag, ,B in the diagram, we let MA(c, ( ) 
denote the number of upward paths in the diagram from ,B to a. As before, we let 
d= M(cA , ). 

The definition of .F; is easy to generalize to any Bratteli diagram which has at 
least n + 1 levels: given such a Bratteli diagram, we define Fin to be the number of 
grading-preserving maps from a graded graph of the form (4.17) into the Bratteli 
diagram. Each such map not only sends cj, /j,% yj into vertices of level j, but also 
sends each edge into an edge of the Bratteli diagram. 

With these definitions of M and Fin, the statement of Lemma 5.1 holds with the 
only change being that cj, /j, -yj now range over vertices at level j in the Bratteli 
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diagram. To generalize Lemma 5.2, we need to place some extra conditions on our 
Bratteli diagrams. 

Any Bratteli diagram is uniquely associated to a chain of semisimple algebras, 
called path algebras (see [14] 2.3.11). The ith path algebra Ai has dimension 
dim Ai = d2, where /3i ranges over vertices at level i, and Ai contains Ai-, as 
a subalgebra. A Bratteli diagram is locally free if Ai is free over Ai-1 for i > 1. 

A Bratteli diagram is multiplicity free if M is either 0 or 1 for any two adjacent 
vertices. 

Lemma 5.6. 1. Assume n > i > 1. Then for any locally free Bratteli 
diagram, dimAiZ is an integer multiple of dimAj-1, and 

n dimAn1 
dimAi i 

2. For any locally free, multiplicity free Bratteli diagram, 

(dim A~i- )2+ Z(2/ii 
-Fi di A-2 pi 

i 

where pi-1 ranges over vertzces at level i - 1, and c+(/i) c- (pi) are 
the number of edges from pi-1 to levels i and i - 2 respectively. 

Proof. If Ai is free over Ai-1, then dimAj/dimAi-1 is the size of a basis for Ai 
as an Ai-1-module. For the rest of the lemma, start with equation (5.2), which 
holds for any Bratteli diagram, and follow the proof of Lemma 5.2 with partitions 
replaced by vertices and the operation of adding a box replaced by an upward 
step in the Bratteli diagram. Frobenius reciprocity still holds, and the locally free 
property implies that 

>E M(ak,,3j)d ,, - dim Ak dj k dimAj 
Cek 

for all vertices !3j at level j, where j < k and aik ranges over vertices at level k. See 
[21]. 

Example 5.7. Any differential poset [24] [25] is a locally free, multiplicity free 
Bratteli diagram. The Bratteli diagram of a tower of group algebras is locally free. 

Several other combinatorial results for Young's lattice also extend to locally free 
Bratteli diagrams: In particular, the theorems of Stanley ([24] Theorem 3.7 and 
[25] Theorem 2.7) which count the number of paths in a differential poset, which 
start and end at q, hold in this more general setting. See [21] for a more detailed 
treatment of these and similar results. 

6. HOMOGENEOUS SPACES 

The harmonic analysis of a function on a homogeneous space is an important 
special case of harmonic analysis on groups. If K is a subgroup of the finite group 
G, then the associated spherical functions on the space G/K are defined to be 
the right K-invariant matrix coefficients on G viewed as functions on G/K. The 
harmonic analysis of a function on G/K is the expansion of that function in a basis 
of associated spherical functions, and may be computed by means of a Fourier 
transform on the homogeneous space. We direct the reader to [20] for background 
on the computation of Fourier transforms on homogeneous spaces. 
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Definition 6.1 (Fourier transform). Let G be a finite group with subgroup K, and 
let f be a complex-valued function on G/K. Then the Fourier transform of f at a 
K-adapted matrix representation of G, or a K-adapted set of matrix representations 
of G, is defined to be the Fourier transform of the right K-invariant function f on 
G defined by 

f (g) IKIf(gK). 

We shall denote the Fourier transform at a representation p, or a set of representa- 
tions AZ, by f(p)K and aK5f respectively. 

The factor 1 appearing in the definition of Fourier transform on homogeneous 
spaces ensures that the Fourier transform on the trivial homogeneous space K/K 
is trivial, and not multiplication by IKI. This will not affect our complexity results, 
but it does make the theory a bit tidier. 

It is important to note that the only matrix entries of 3Kf which may be nonzero 
are those entries in columns corresponding to K-invariant basis vectors. Moreover, 
the Fourier transform relative to a complete K-adapted set of inequivalent irre- 
ducible representations of G is an isomorphism from the space of functions on 
G/K to the space obtained by ignoring those columns which do not correspond to 
K-invariant vectors 

A representation of G is said to be of class-1 with respect to K if it contains 
a nontrivial K-invariant vector. If desired, we could restrict ourselves to class-1 
representations when discussing Fourier transforms on homogeneous spaces. 

Remark 6.2. Let 1Z be a complete K-adapted set of inequivalent irreducible repre- 
sentations of G, let p E 1Z be class-1 with respect to K, and let f be a complex 
function on G/K. Then the coefficient of the associated spherical function Piju in 
the harmonic analysis of f is 

dimPp f(pV)K] 

where pv denotes the dual of p, and jo indexes the right K-invariant columns of 
p. Clearly the harmonic analysis of f may be found by computing the Fourier 
transform Kv f relative to the set of dual representations, and then scaling the 
output by the factors KGIKI 

Of course, if the group is Sn and 1? is Young's orthogonal form, then taking the 
dual has no effect. 

The complexity and reduced complexity of the Fourier transform on a homoge- 
neous space were defined in [20] by analogy with the group case. 

Definition 6.3 (Complexity). Let G be a finite group with subgroup K, and let 
AZ be any K-adapted set of matrix representati6ns of G. 

1. Let TG/K(7Z) denote the minimum number of operations needed to com- 
pute the Fourier transform of f on AZ via a straight-line program for an 
arbitrary complex-valued function f defined on G/K. 

2. Let tG/K(1Z) = TG/K(l)/ CG/K|. 

TG(7Z) is called the complexity of the Fourier transform on G/K for the set AZ, and 
tG/K(1) is called the reduced complexity. 
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The complexity always satisfies the inequalities 

lG/KI -1 < TG/K(lZ) <? G/KI 2. 

When there is no possibility of confusion, we will drop the '1Z' in the notation for 
complexities and reduced complexities. 

In order to compute Fourier transforms on homogeneous spaces efficiently it suf- 
fices to see how the algorithms we have already developed for groups simplify when 
applied to a right invariant function. In [20] it was shown that for a large class of 
algorithms the bounds on the group reduced complexity tG also apply to the ho- 
mogeneous space reduced complexity tG/K, so complexity results for homogeneous 
spaces could be obtained with essentially no extra work. 

This is true in the current case as well. For instance, we shall show that if 1Z is an 
adapted set of representations of S, the homogeneous space reduced complexities 
satisfy 

(6.1) s/(J)?t /b+ 3(n - 1) (6.1) ~~~tSn/Sn- ('/Z) - tSn-,/Sn-k 2 

Notice that this has the same form as equation (3.4) of Section 3. Applying (6.1) 
recursively and noting that tSn-k/Sn-k = 0 will give us Theorem 1.2 of the intro- 
duction. 

We now restate and prove Theorem 1.2 using the terminology of adapted repre- 
sentations. 

Theorem 6.4. The Fourier tran1sform of a complex function on the homogeneous 
space Sn/Sn-k may be computed at a complete set of (class-1) irreducible matrix 
representations of Sn adapted to the chain of subgroups 

(6.2) Sn > Sn-1 > ... > SI 

in no more than 3k(2n-4k-) ISn/Sn-k scalar operations. 

Proof. The result follows by chasing through the algorithm for computing Fourier 
transforms on Sn to see how it simplifies when applied to a right Sn-k-invariant 
function on Sn. We will simply indicate how to change the proofs already given in 
the group case to the current situation. 

First we note that if f is a right Sn-k-invariant function on Sn, then the 
corresponding element of C[Sn] is invariant under multiplication by elements of 
C[Sn-k] on the right. In particular, if k > 1 then this also holds for the elements 
Fy E C[Sn-1] that occur when the proof of Lemma 2.10 is applied to the sub- 
group Sn-1 of Sn Therefore, we must bound the number of operations required to 
compute any sum of the form 

n 

(6.3) Z =Zti+1 ...tn Fi 
* ~~~i=l 

in a Gel'fand-Tsetlin basis for the group algebra relative to the chain of subgroups 
(6.2), where the Fi are arbitrary right Sn-k-invariant elements of C[Sn-1]. 
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In Sections 3 and 4 we showed that relative to a Gel'fand-Tsetlin basis for (6.2), 
the sum (6.3) has the following expression in coordinates, 

n 

(6.4) [SF,,=E E i ( an- 71 r j-loj- Kl An-2a .1 Y "j=2 

p (j3 a3jj-1 

j=i+1 - l ~ - 

where the partitions Cj, 3j, -yj satisfy the relations (4.9), and an-1 = ayn-1 This 
follows from Lemma 4.4, the proof of Lemma 4.7, and (6.3). Then, by equation 
(3.3) and the proof of Lemma 4.8, we were able to show that this sum could be 
computed in En2 Yn scalar operations, where Fin is the number of sequences of 
partitions satisfying the relations described by (4.17). 

Now suppose that each Fi is invariant under right multiplication by elements of 
Sn-k. Then the coordinate of F 

[F]a F (n-i an-2 
.. 

) 

is only nonzero when -Yn-k is the partition (n - k) with a single row, i.e., the 
corresponding representation A \-n-k is the trivial representation of Sn-k. Therefore 
we only need to compute (6.4) in those cases where Yn-k =(n-k), and the number 
of operations required to do this is E j= .Fn, where 7n is the number of sequences 
of partitions which have Yn-k = (n - k) and satisfy the relations (4.17) as well. 

Following through the arguments of Lemma 5.1 in the case where Yn-k =(n -k), 
it is easy to see that an expression for in may be obtained from the expression (5.2) 
for Fin by replacing the factor d-,n-1 by M(yn-1, (n - k)). Splitting the resulting 
sum in two according to the cases ai-, =& pi-1 and ai-, = pi-1, and using (5.1) 
leads to the expression (6.5) for Jn, in the notation of Section 5. 

(6.5) F4 (-yn- 1 v ai-2) )M(i- 1 v ai-2 )do3-,)M(-n-jv (n-k)) 
oYn-1 v,/Qi-1 

ai-2 

+ E 4 M(-Yn- 1, i_ ) iMP(Oi-1) 2dti _ 14(_Yn _ 1 (n -k)) 

By Frobenius reciprocity and (5.1), the first term of (6.5) may be evaluated as 

A4 M(yn - 1 6ia_2)MA(-Yn-1, (n-k)) fE.A4(0i-lu a-2)d 0 1] 

'Yn-l vai-2 L!3i- 1 

= A4(-yn-l vacx-2)MA(-Yn-1 v (n -k)) fdim(Indsii_2 /AOi-2 ) 
oYn-1 v Ri-2 ~ ~ ~ ~ ~ ~ ~~i- 'Yn -1a -',-2 

> IMSyi,llSi-21M(Eyn (-n-k))(n-k)A M(/ yn- ,a-2d,2 

Yn-1 , ~ n-iai2 

(6.6) (i-1) E j M(yn-1 M (n-k))dn-1 
nYn-1 

(i- 1) lSn-1/Sn-k| = Sn/Sn-k V 
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Notice that the last step follows from Frobenius reciprocity applied to the trivial 
representation of Sn_k induced up to Sn-l 

The second term of (6.5) is bounded by 

|Sn-1/Sn-kJ x maxjmp(A31)2, 

where jmp(3i_ ) is the number of jumps in the partition ,Bi-1. By the arguments of 
Lemma 5.3 we already know that the max in this expression is bounded by 2(i - 1), 
so the second term of (6.5) is bounded by n(in) SSn/Sn-k 1 

Adding the bounds for the two terms of (6.5) shows us that 

_i < |Sn/Sn-kl, 

and hence that the reduced complexities for the computation of Fourier transforms 
on homogeneous spaces satisfy 

(6.7) tSn/Sn-k ? tSn-l/Sn k + 1 S/Synk <_tSn-1/Sn-k + 2 

Applying (6.7) recursively with ts0 k/sn = 0 shows that tSn/S- < 3k(2n-k-1) 

and hence that the Fourier transform of a complex function on Sn/Sn-k may be 
computed in no more than 3k(2n-k-1) I Sn/Sn-k I multiplications and the same num- 4 
ber of additions. D 

Remark 6.5. Theorem 6.4 is an improvement on the result of Maslen and Rockmore 
([20], Theorem 6.5), which was obtained by applying Clausen's algorithm [5] to a 
right invariant function on the symmetric group. They showed that the Fourier 
transform of a complex function on Sn/Sn-k could be computed at an adapted 
set of representations in no more than k (n2 - kn + 1 (k2 - 1)) ISn/Sn-kl scalar 
operations. 

As in the case of transforms on groups, Theorem 6.4 gives us a method for 
computing inverse transforms, with no extra work. Suppose that 1Z is a complete 
K-adapted set of inequivalent irreducible representations of the finite group G, and 
let OK be the map 

OK: ED Mat (dim p) (c) ' Mat (dim p) (c) 
PER ' PER 

(6.8) p7 

03 F(p) ( & >im FF(p). 

Then (S{R1v)T3 KOK - I, where J is the re-indexing map defined by (3.6). There- 
fore, inverse Fourier transform algorithms may be obtained from Fourier transform 
algorithms by taking the transpose algorithm and scaling the input. 

When G = Sn and the representations are in Young's orthogonal form, we have 
(@ K)T2KK - I, where K is any subgroup in the chain (6.2). 

The preceding discussion gives us Theorem 6.6, which we state without further 
proof. 

Theorem 6.6. Assume 1? is a complete set of (class-1) irreducible matrix rep- 
resentations of Sn adapted to the chain of subgroups (6.2). For each p E 1Z, let 
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F(p) be a complex dim p x dim p matrix with zeroes in those columns which are not 
S,_k-invariant columns of p. Then the inverse Fourier transform 

f (sSn-k) = Sn( 
k ) 1[EDF(p)]2 (SSn-k) 

(6.9) [PGZ j 

1 S / S E (dim p) Trace(F(p)p(s1)) 

may be computed in no more than 3k(2nr-k-1) ISn/Sn-kl scalar operations. 

Remark 6.7. Diaconis and Rockmore [11] discuss the computation of isotypic pro- 
jections of functions on homogeneous space. They suggest a direct method equiv- 
alent to the composition of a Fourier transform followed by a truncation followed 
by an inverse Fourier transform, and which takes IG/K12 scalar operations. 

The current techniques can be applied to efficiently compute the isotypic projec- 
tions of functions on the space Sn/Sn-k. First compute the Fourier transform of 
the function on Sn/Sn-k with respect to Young's orthogonal form, by the method 
of Theorem 6.4. Next truncate those parts of the transform which do not corre- 
spond to representations of the chosen type p. Finally, compute an inverse Fourier 
transform by multiplying by sdimP , and then applying the transpose of the al- 
gorithm of Theorem 6.4, again with respect to Young's orthogonal form. Note that 
for some applications the final inverse transform may not be necessary. 

7. CONCLUSION 

Although the results presented in this paper are specific to the symmetric group, 
the techniques used to obtain them are much more general. The use of Gel'fand- 
Tsetlin bases, the choice of factorizations for group elements or coset representa- 
tives, and the rearrangement of sums similar to Horner's rule are all well known 
tools for computing Fourier transforms on finite groups [3] and compact Lie groups 
[18]. Together they form the basis for the general 'separation of variables' method 
for constructing Fourer transform algorithms [20] [21]. 

The construction of the bilinear maps in Section 4 may also be generalized to any 
finite group (or semisimple algebra). Given a system of Gel'fand-Tsetlin bases, a 
collection of products of group elements, and a permutation, there is a well defined 
sequence of bilinear maps that allow the products to be rearranged (cf., Prop. 2) 
according to the chosen permutation. The spaces on which the bilinear maps are 
defined are associated to diagrams generalizing (4.9) (4.11) (4.17), and formulae for 
the number of operations needed to apply these maps can be read off the diagrams, 
in terms of restriction multiplicities. In joint work with Dan Rockmore [21], such 
ideas have been systematically developed, and applied to the computation of Fourier 
transforms on a variety of groups and algebras. 

The methods used in Section 4 also raise some combinatorial questions. Walks 
generalizing (4.11) have already been studied on Young's lattice and other posets 
[24] [25], but the appearance of multiply-connected configurations, e.g., (4.9) and 
(4.17), appears to be a new phenomenon; also see [18] and [20]. More generally, 
one may consider mappings from any graded diagram into a Bratteli diagram. 
Such objects appear in the construction of Fourier transform algorithms on other 
finite groups [21], and the complexity of the algorithms may again be obtained 
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by counting the mappings. There are always expressions for the numbers of these 
objects, generalizing equation (5.2) for ,n, but it is not clear when these expressions 
may be evaluated in closed form. We do not even know the answer for (5.2) itself. 

Finally, we should note that, even for the symmetric groups, the problem of 
computing Fourier transforms is far from completely solved. In particular, some 
applications [8] [11] require the transform to be computed at representations which 
are adapted relative to other chains of parabolic subgroups. Although Clausen's 
algorithm and the algorithms in this paper may both be adapted to these new 
situations, the results are less convincing. 

We have not yet implemented the algorithms in this paper. Because of their close 
relationship with Clausen's algorithm, we expect these algorithms to be stable and 
efficient, in practice as well as in theory. 
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